

101405L, 101410L, 101415

PRODUCT DATA

Dura-Go Velvet / Matte Polycarbonate

Dura-Go™ substrates are HP Indigo-licensed and were jointly developed by Hanita Coatings, Tekra Corporation and HP Indigo to create the premier product line of film substrates for HP Indigo digital presses.

Our proprietary primer coatings provide a number of benefits, including:

Reliable, superior ink adhesion

High definition of colors

Long shelf life, guaranteed to print for one year after purchase when stored at less than 72F and less than 50% relative humidity.

The Dura-Go coating is highly resistant to weathering/degradation:

		Units	Test Conditions
Weatherability	2	Months	Outdoor
	24	Months	Indoor
Dish Washer	pass	N/A	1.5 hours, top cycle
Water and	200	Hours	65% RH at 80F
Chemical Resistance	200	Hours	Distilled Water at 90F
	2	Hours	Water + 2% detergent at 150F
	24	Hours	Ethanol at 75F

Dura-Go Velvet / Matte Polycarbonate is a one side velvet, one side matte transparent polycarbonate film coated on one side that is available in a 5, 10, and 15 mil thickness. It offers high temperature resistance and excellent dimensional stability. It offers ease of processing for embossing, die cutting, and bending. It is used in applications such as name plates, face plates, overlays, and high performance graphics.

Dura-Go Velvet / Matte Polycarbonate Data Sheet Page 2

Typical Property Values

Property	ASTM Test Method	Units (USCS)	Value	ISO Test Method	Units (SI)	Value
Mechanical						
Tensile Strength						
@Yield	ASTM D882	psi	8500	ISO 527	MPa	62
Ultimate	ASTM D882	psi	9000	ISO 527	MPa	65
Tensile Modulus	ASTM D882	psi	300000	ISO 527	MPa	2506
Tensile Elongation at Break	ASTM D882	%	100-157	ISO 527	%	100-154
Gardner Impact Strength at 0.03 in. (0.75 mm)	ASTM D3029	ft-lb	23	ISO 6603-1	J	31
Tear Strength						
Initiation	ASTM D1004	lb/mil	1.4-1.8		kN/m	245
Propogation	ASTM D1922	g/mil	30-55		kN/m	10-20
Puncture Resistance (Dynatup)	ASTM D3763	ft-lb	9		J	12
Fold Endurance (MIT)						
0.010 inch (0.25 mm)	ASTM D2176-69	double folds	130			
0.020 inch (0.50 mm)	ASTM D2176-69	double folds	35			

Thermal						
Coefficient of Thermal Conductivity	ASTM D5470	Btu/hr/ft²/°F/in	1.35		W/m°K	0.2
Coefficient of Thermal Expansion	ASTM E831	(x 10 ⁻⁵ /°F)	3.2	ISO 11359	(x 10 ⁻⁵ /°C)	5.8
Specific Heat @ 40°F (4 °C)	ASTM E1269	Btu/lb/°F	0.3		KJ/Kg-C°	1.25
Glass Transition Temperature	ASTM D3417/D3418	°F	307	ISO 11357	°C	153
Vicat Softening Temperature, B	ASTM 1525-00 Modified	°F	323		°C	160
Heat Deflection Temp. by TMA at 1.8 Mpa		°F	290	ISO 75 Modified	°C	145
Shrinkage at 302 °F (150 °C)	ASTM D1204	%	1.40%		%	1.40%
Brittleness Temperature	ASTM D746	°F	-211		°C	-135

	Min./Max. Limit of		
Manufacturing Specifications	Nominal		
Gauge Range			
0.008" (0.200mm)	± 10%		
0.010-0.015" (0.250-0.375 mm)	± 5%		
0.020" (0.500 mm)	± 3%		

The application suggestions, specifications and other data described here are based on experience that is believed by Tekra Corporation and Hanita Coatings to be reliable. Because of the characteristics of these products, you should, before using these products in production, perform your own tests to determine to your satisfaction whether these products are acceptable and suitable for your particular purposes under your operation conditions.