3M™ Conformable Double Coated Tapes 93420, 93425 and 93430

3M™ Conformable Double Coated Tapes have excellent shock resistance making them more drop resistant due to a uniquely designed, energy absorbing core. The tapes can be used for applications such as lens or electronic device bonding. Three different adhesive gauges are available which are coated on both sides of a black, energy absorbing core. 8 mil (93420), 10 mil (93425) and 12 mil (93430) total tape thicknesses are available options. Additional features of 3M™ Conformable Double Coated Tapes include:

- Excellent anti-lifting properties
- Great chemical resistance
- Strong bonds to both high and low energy surfaces

Contact Tekra today at 1-800-448-3572 or at www.tekra.com to learn more about 3M™ Conformable Double Coated Tapes.

3M™ Stretch Release Tape 6657-150

3M™ Stretch Release Tape 6657-150 is a 6 mil double coated tape with a unique ability to be stretched in both parallel and perpendicular directions for clean removal without breaking. In addition, the tape can be easily removed without adhesive residue left behind.

Additional benefits include:

- Easy to die-cut and laminate
- Good UV and chemical resistance
- Strong adhesion
- Vibration resistance
- No adhesive residue

Application ideas include:

- Automotive (i.e. battery bonding)
- Circuit board bonding
- General re-work applications

Call Tekra today for more information!

Inkjet Inks at a Glance

Inkjet is by far the most diverse line in digital printing. Unlike “Indigo” or “Toner”, which refer directly to the inks themselves; the term “Inkjet” refers to the method of delivery by which the inkjet ink is being deposited onto the substrate. What the ink make-up is, how they are treated and cured as well as the pros and cons of each inkjet ink type vary greatly. Understanding these differences will benefit your production overall by saving you time, money and hassle when processing your media. Tekra has published a Technical Tip that breaks down the main inkjet ink types with quick definitions of their make-up, how they are treated by the press and how they are accepted by the media.

In this article we review Solvent, Eco-Solvent, Latex, UV and Aqueous inkjet methods, each with an explanation of the ink droplet, the method of ink delivery and the pros and cons of each inkjet type. Understanding how and why each method is used is important when deciding which inkjet ink is the most compatible for your project or substrate, especially when discussing plastics. An example, solvent inkjet inks ‘bite into’ the material using solvent carriers to achieve a permanent bond. This is a great choice for durability, however, polycarbonate films need specialty coatings to protect the film from the solvent degradation, therefore, this method means you may not be able to use whatever material you have on your shelf. By contrast, aqueous inkjet inks utilize a water carrier for distribution and absorb the inks into the substrate. This means that a porous material or coating is needed for this method to be effective and achieve optimum adhesion. This technical tip will outline these processes quickly, as well as give “typical applications” for each ink that will help narrow down the choices when selecting a media with your existing print method.

Each method has its advantages and disadvantage as well as recommended substrates and applications. We hope that this article will help shed some light on how each inkjet method works and be a resource for you when training, or selecting the most effective inkjet method, or materials for your next project. To read this, or other technical tips regarding varying print methods or substrate information, click here.
Tekra’s New UV and Visible Light Spectrophotometer

Our latest addition to Tekra’s analytical capabilities is our new UV/VIS spectrophotometer. With this device we can measure the absorption and reflectance of light across the visible and UV spectrums. We are using the UV/VIS to improve our quality assurance processes when producing our outdoor durable materials. The UV/VIS technology is based on the Beer-Lambert Law that states that the absorbance of a solution is directly proportional to the concentration of the absorbing species within the solution. In practice, this allows us to test the performance of various chemistries, additives, and substrates meant to control what parts of the light spectrum are allowed to pass through, what is reflected, and what the material itself absorbs. We can quantify how the materials are performing in real time. When combined with our laboratory pilot coater, we can test multiple formulations and concentrations in a rapid prototyping process where new ways to manage light are a critical variable. If you are looking for ways to extend the durability and performance of a plastic substrate or find a new way to diffuse, reflect, or increase brightness within an application, please contact us. We may be able design a coated film to your unique requirements.

ProTek® Fine Textured Heat Stabilized Polyester

Tekra’s ProTek® Fine Textured Heat Stabilized Polyester offers the slight surface roughness that many applications require with the added benefit of having all of the typical properties of a hardcoated film. The texture on the surface of the film gives customers the desired tactile feel they look for in applications such as treadmill overlays or membrane switches.

An added benefit to ProTek® Fine Textured Heat Stabilized Polyester is that the hardcoat was developed to withstand 10 passes and still be able to be first surface decorated. This eliminates the need to do a blind register which will also help reduce your cost. This characteristic allows the film to have first surface printability with clear, matte and texture UV inks and can be second surface printed with solvent or UV inks.

Additionally, Tekra uses a heat stabilized polyester base film which prevents the material from shrinking during the post processing stages. This film also offers enhanced scratch resistance, excellent abrasion resistance, and excellent chemical resistance to common household cleaners and industrial solvents. This is an important feature to have when the finished application is something such as an appliance overlay where detergents, cleaner, etc. could come in contact with the film often.

This material comes in a 49” web width and is available in 5, 7, and 10 mil thicknesses, as well as, custom roll width and sheet sizes. Please contact Tekra to learn more about ProTek® Fine Textured Heat Stabilized Polyester.

Functional PTC Carbon Resistor Inks

Loctite® ECI 8000 Series is an innovative line of PTC heating elements manufactured by Henkel Electronics are now available from Tekra, A Division of EIS, Inc. These carbon resistor inks are formulated to specific resistance values that activate when voltage is applied, then “switch off”, after reaching a pre-set target resistance. Targeted temperature resistance values range from high to low power (120°C to 45°C).

This self-regulating “tuned” action makes PTC carbon resistor inks ideal for heating elements used in various applications including: commercial and residential floors & walls and exterior auto lights, side mirrors & defoggers.

PTC Carbon Resistor Ink compositions can be printed via screen or rotary processes. These inks are compatible with silver and dielectric inks printed on base PET, PEN and PI film substrates.

Loctite® ECI 8000 E&C Series is the newest PTC Carbon Resistor ink compositions available from Tekra, A Division of EIS, Inc. Offering four targeted resistance values, PTC resistor inks are engineered to maintain stable properties that excel in multiple self-regulating heating environments.